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ABSTRACT
A new analytical model is developed for predicting thermal

contact resistance (TCR) of non-conforming rough contacts of
bare solids in a vacuum. Instead of using probability relation-
ships to model the size and number of microcontacts of Gaus-
sian surfaces, a novel approach by employing the “scale anal-
ysis methods” is taken. It is shown that the mean size of the
microcontacts is proportional to the surface roughness and in-
versely proportional to the surface asperity slope. A general rela-
tionship for determining TCR is derived by superposition of the
macro and the effective micro thermal resistances. The present
model allows TCR to be predicted over the entire range of non-
conforming rough contacts from conforming rough to smooth
Hertzian contacts. It is demonstrated that the geometry of heat
sources on a half-space for microcontacts is justifiable and that
the effective micro thermal resistance is not a function of sur-
face curvature. A comparison of the present model with 604
experimental data points, collected by many researchers during
the last forty years, shows good agreement for the entire range of
TCR. The data covers a wide range of materials, mechanical and
thermophysical properties, micro and macro contact geometries,
and similar and dissimilar metal contacts.

Nomenclature
A = area, m2

a = radius of contact, m
b = flux tube radius, m
c = scale analysis constant
c1, c2 = Vickers microhardness coefficients, GPa, −
CS = carbon steel
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oratory. Member ASME .
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dv = Vickers indentation diagonal, µm
dr = increment in radial direction, m
E = Young’s modulus, GPa
E0 = effective elastic modulus, GPa
F = external force, N
h = contact conductance, W/m2K
Hmic = microhardness, GPa
H 0 = c1 (σ

0/m)c2 , GPa
k = thermal conductivity, W/mK
L = length scale ≡ b2L/ (σ/m), m
m = effective mean absolute surface slope
ns = number of microcontacts
P = pressure, Pa
P ∗ = non-dimensional pressure ≡ F/ ¡πH 0b2L

¢
Q = heat flow rate, W
R = thermal resistance, K/W
R∗ = non-dimensional thermal resistance
T = temperature, K
Y = mean surface plane separation, m

Greek
α = non-dimensional parameter ≡ σρ/a2

H

δ = max surface out-of-flatness, m
ε = flux tube relative radius, a/b
θ = angle of the surface asperities, rad
ψ = spreading resistance factor
ρ = radius of curvature, m
σ = RMS surface roughness, µm
σ0 = roughness reference value =1 µm
τ = non-dimensional parameter ≡ ρ/aH

υ = Poisson’s ratio, −
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Subscripts
0 = value at origin
1, 2 = surface 1,2
a = apparent

EC = elastoconstriction
H = Hertz
j = joint
L = large
mic = microcontact
P = plastic deformation
r = real
s = small, solids
v = Vickers

1 INTRODUCTION

Heat transfer through interfaces formed by mechanical
contact of rough solids has many important applications
such as in microelectronics chip cooling, spacecraft struc-
tures, and nuclear fuel temperature prediction.

Heat transfer across the interface can take place by
three different modes, i) conduction at the microcontacts, ii)
conduction through the interstitial fluid in the gap between
the contacting solids, and iii) thermal radiation across the
gap. The radiation heat transfer remains small and can be
neglected for surface temperatures up to 700 K [1]. Since in
this study the interstitial fluid is assumed to be absent, the
only remaining heat transfer mode is conduction through
the microcontacts.

Engineering or real surfaces have roughness and sur-
face curvature/out-of-flatness simultaneously. Due to sur-
face roughness, contact between two surfaces occurs only
over microscopic contacts which are located in the “con-
tact plane”. The real area of contact, i.e., the total area
of microcontacts, is a small fraction of the nominal contact
area, typically a few percent [2, 3]. As illustrated in Fig.
1, the macrocontact area, the area where microcontacts are
distributed, is formed as a result of surface curvature of con-
tacting bodies. Heat flow is constricted to pass through the
macrocontact and then microcontacts. This phenomenon is
observed through a relatively high temperature drop across
the interface. Here an example is given to show the mag-
nitude and relative importance of TCR versus the “bulk
resistance”. Consider a 3 cm2 flat SS plate with the thick-
ness of 5 mm which has a surface roughness of 1 µm. The
TCR for the bare joint in a vacuum with 0.1 MPa contact
pressure, is in the order of 30 K/W as compared to the
plate bulk resistance of 0.2 K/W .

Categorizing TCR modeling procedures into geomet-
rical, mechanical and thermal analyses, Bahrami et al.
[4] reviewed the existing theoretical TCR models and dis-
cussed aspects of each component of the analysis in detail.
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Figure 1. GEOMETRY OF SPHERICAL ROUGH CONTACT IN VACUUM,

HEAT SOURCE ON HALF-SPACE, AND FLUX TUBE GEOMETERIES

Comparing with more than 400 experimental data points,
Bahrami et al.[1] showed that the existing analytical models
are applicable only to the limiting cases namely conform-
ing rough contacts and smooth sphere-flat contacts and do
not cover the entire range of TCR. Therefore, the need for
a theoretical model that can predict TCR over the entire
range of contacts still exists.

The objective of this study is to develop a compact
analytical model for predicting TCR for the entire range of
non-conforming rough contacts, i.e., from conforming rough
to smooth sphere-flat contact. A novel approach is taken
by employing scale analysis methods to achieve this goal.

2 THEORETICAL BACKGROUND

Analytical, experimental and numerical models have
been developed to predict thermal contact resistance (TCR)
since the 1930’s. A large number of publications on TCR
exist in the literature, to name a few Clausing and Chao
[5], Lambert and Fletcher [6], and Nishino et al. [7] can
be mentioned, which indicates that the development of a
general predictive model is a difficult task. A comprehen-
sive review of literature can be found in Bahrami et al. [4].
Here only a short review of the materials used to develop
the present model is given.

According to the examination of the microgeometry
of rough surfaces, surface asperities have small slopes and
curved shapes at their summits [8, 9]. It is a common
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methodology to simplify the contact of two Gaussian rough
surfaces by the contact of a smooth plane with a random
rough surface which has equivalent surface characteristics.
The equivalent surface roughness σ and surface slope m can
be found from

σ =
q
σ2

1 + σ
2
2 and m =

q
m2

1 +m
2
2 (1)

Cooper et al. [10] proved that the microcontacts can be as-
sumed isothermal provided the thermal conductivity in each
body is independent of direction, position and temperature.

Thermal spreading resistance is defined as the differ-
ence between the average temperature of the contact area
and the average temperature of the heat sink/heat source,
divided by the total heat flow rate Q [11], i.e., R = ∆T/Q.
The real shapes of microcontacts can be a wide variety of
singly connected areas depending on the local profile of the
contacting asperities. Yovanovich et al. [12] studied the
steady-state thermal constriction resistance of a singly con-
nected planar contact of arbitrary shape. They proposed a
definition for thermal constriction resistance based on the
square root of the contact area. The square root of contact
area was found to be the characteristic dimension and a non-
dimensional constriction resistance based on the square root
of area was proposed, which varied by less than 5% for all
shapes considered. Therefore, the real shape of the micro-
contacts would be a second order effect and an equivalent
circular contact, which has the same area, can represent the
microcontacts.

Yovanovich and Hegazy [13] showed through experi-
ments that the surface microhardness is much higher than
the bulk hardness and that the microhardness decreases
as the indentation depth increases until the bulk hardness
is reached. They proposed a correlation for determining
the microhardness, Hmic = c1 (dv/σ0)

c2 , where dv (µm),
c1 (GPa) , c2 (−) , and σ0 = 1 (µm) are the Vickers indenta-
tion diagonal, correlation coefficients determined from the
Vickers microhardness measurement, and a reference value,
respectively. Microhardness depends on several parameters:
mean surface roughness, mean absolute slope of asperities,
method of surface preparation, and applied pressure. Srid-
har and Yovanovich [14] suggested empirical relations to
estimate Vickers microhardness coefficients, using the bulk
hardness of the material. Two least-square-cubic fit expres-
sions were reported

c1 = HBGM

¡
4.0− 5.77κ+ 4.0κ2 − 0.61κ3

¢
c2 = −0.57 + 0.82κ− 0.41κ2 + 0.06κ3

(2)

where κ = HB/HBGM , HB is the Brinell hardness of the

bulk material, and HBGM = 3.178(GPa). The above cor-
relations are valid for the range 1.3 ≤ HB ≤ 7.6 (GPa), the
RMS percent difference between data and calculated values
were reported; 5.3% and 20.8% for c1, and c2, respectively.
Milanez et al. [15] studied the effect of microhardness coeffi-
cients on TCR by comparing the TCR’s computed from the
measured versus the estimated, from Eq. (2), microhard-
ness coefficients. They concluded that despite the difference
between the measured and estimated values of microhard-
ness coefficients, the TCR’s predicted by both methods are
in good agreement.

As shown in Fig. 1, there are two geometries that
can be used as basic elements to model the thermal con-
striction/spreading resistance of the microcontacts, i) heat
source on half-space in which microcontacts are (assumed
to be) located far from each other, where thermal constric-
tion/spreading resistance can be found [11]

Rmic, half-space =
1

2ksas
(3)

ii) the flux tube geometry, considering the effect of neigh-
boring microcontacts. Cooper et al. [10] proposed a simple
accurate correlation for determining the flux tube constric-
tion/spreading resistance,

Rmic, flux tube =
ψ (εs)

2ksas
(4)

where ψ (εs) = (1− εs)
1.5 and εs = as/bs.In Eq. (4), it

is assumed that the radii of two contacting bodies are the
same, i.e., b1 = b2 = b. In general case where b1 6= b2, ther-
mal spreading resistance will be, Rflux tube = ψ (a/b) /4ka.

In the case of smooth spherical contact, the Hertzian
theory can be used to calculate the radius of the macrocon-
tact area, aHz. Hertz replaced the geometry of two spheres
by a flat surface and an equivalent sphere, where the effec-
tive radius of curvature is, 1/ρ = 1/ρ1+1/ρ2. Hertz derived
a relationship for the radius of the contact area

aH =

µ
3Fρ

4E0

¶1/3

(5)

1

E0
=
1− υ2

1

E1
+
1− υ2

2

E2

where E, υ, and E0 are the Young’s modulus, Poisson’s ra-
tio, and the effective elastic modulus, respectively. Clausing
and Chao [5] modeled the surface out-of-flatness by a spher-
ical profile. The relationship between the equivalent radius
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Figure 2. GEOMETRY AND THERMAL RESISTANCE NETWORK: CONFORMING ROUGH, ELASTO-CONSTRICTION, AND TRANSITION REGIONS

of curvature and the surface out-of-flatness is ρ = b2L/2δ,
where δ is the maximum out-of-flatness of the surface, see
Fig. 2. Using the flux tube correlation, Eq. (4), the joint
resistance for the smooth sphere-flat contact, i.e., elasto-
constriction [16] limit can be determined from

Rj, EC =
(1− aH/bL)

1.5

2ksaH
(6)

Comparison between the elasto-constriction model, i.e., Eq.
(6) and the smooth sphere-flat experimental data shows
good agreement [4], thus the flux tube solution can be em-
ployed for determining the macro thermal resistance.

3 MACRO AND MICRO THERMAL RESISTANCES

As illustrated in Fig. 1, the heat flow rate Q which
is being transferred from the heat source at Tsource to the
contact plane at Tc, experiences the macro thermal constric-
tion RL,1, which arose due to the macrocontact area. Heat
is then passed through ns (parallel) microcontacts in the
contact plane, which is called the microcontact resistance,
Rs.

Assuming circular isothermal microcontacts, at Tc, that
have the mean radius (in the order of as ∼ µm), isothermal
planes must exist at intermediate temperatures Ti,1 and Ti,2,

i.e., Tsource < Ti,1 < Tc < Ti,2 < Tsink at some location l
above/below the contact plane in body 1 and 2, respectively.
If the microcontacts are considered as heat sources on half-
space the distance between these intermediate isothermal
planes and the contact plane l = 40as ∼ 40 µm [11]. As mi-
crocontacts grow in size and number they start to effect each
other (the flux tube geometry) and l decreases, l ∼ bs [17].
Consequently, macro thermal constriction/spreading resis-
tances RL,1 and RL,2 are in series between the heat source
and the isothermal plane Ti,1 and the isothermal plane Ti,2

and the heat sink, respectively. Therefore, TCR of a non-
conforming rough joint in a vacuum can be written as

Rj = RL +Rs (7)

where RL = RL,1 +RL,2, Rs = Rs,1 +Rs,2, and

1

Rs, 1 or 2
=

nsX 1

Rmic, 1 or 2

where Rmic, 1 or 2 is the thermal constriction/spreading re-
sistance of a single microcontact in body 1 or 2.

Equation (7) is a general expression and applicable to
all spherical rough contacts. Two limiting cases can be dis-
tinguished for Eq. (7), i) the conforming rough limit, i.e.,
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contact of flat rough surfaces where the surface curvatures
are very large thus macro thermal resistance RL is negligi-
ble and micro thermal resistance Rs is the controlling part,
ii) the elastoconstriction limit where the radii of curvature
of contacting bodies are small and surfaces are smooth, thus
the macro thermal resistance RL is predominant and Rs is
negligible, and iii) transition region or general contact in
which both RL and Rs exist and have the same order of
magnitude. Figure 2 shows the above-mentioned regions
and their corresponding thermal resistance networks.

4 THE PRESENT MODEL

Due to the random nature of surface roughness study-
ing the deformation and heat transfer of each single asperity
is impossible, instead a representative (modeled) asperity is
chosen and studied. Surface roughness is modeled by as-
suming Gaussian distribution of asperities. The RMS sur-
face roughness σ is a representative for the mean surface
asperity heights.

In this section, using scale analysis, first an expression is
derived for TCR of conforming rough contacts, Rs. Then,
the non-conforming macrocontact area is divided into in-
finitesimal surface elements where the conforming rough
model relation can be applied. By integrating the local
microcontact resistance over the macrocontact, an effective
microcontacts resistance Rs is found. Using the flux tube
correlation, the macrocontact resistance RL is computed.
Finally, superimposing the macro and micro thermal resis-
tances, Eq. (7), the joint resistance is determined.

4.1 Conforming Rough Contact Limit

Surface roughness can be visualized as shallow valleys
and hills with small slopes where asperities have spherical
shapes at their summits. Figure 3 illustrates a model as-
perity, which represents the equivalent rough surface char-
acteristics σ andm, placed in contact with a smooth plate at
the mean separation Y. Using the equivalent rough surface
simplification and considering the fact that the mean sur-
face slope, m, is small, the microcontacts are circular, flat
and all in the same contact plane. Figure 3 also illustrates
proportionalities between the mean microcontact radius as

and the surface roughness σ and slope m. As surface slope
slightly decreases from m to m−δm, while the roughness σ
and Y are held constant, the mean radius of microcontacts
increases and visa versa, thus one can write as ∼ 1/m. Fol-
lowing the same method for surface roughness, we obtain
as ∼ σ. Combining the above proportionalities, the mean
radius of the microcontacts is proportional to the surface
roughness and inversely proportional to the surface slope,
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i.e.,

as ∼
σ

m
(8)

Considering ns circular microcontacts with the mean radius
of as within the contact area, the real contact area is

Ar = πnsa
2
s ∼ πns

³ σ
m

´2

(9)

The microcontacts are assumed to deform plastically. In
other words, each microcontact can be visualized as a small
microhardness indentation. The empirical correlation pro-
posed by Yovanovich and Hegazy [13], see section 2, is used
to estimate the microhardness. Preserving the microcontact
area, i.e., Av = πa

2
s, where Av is the projected area of the

Vickers microhardness test, the Vickers indentation diago-
nal dv can be related to the mean radius of microcontacts
as, dv =

√
2πas, microhardness becomes,

Hmic ∼ H 0 ≡ c1
µ
σ

mσ0

¶c2

(10)

Assuming plastic deformation of microcontacts, external
force can be related to the real contact area and surface
microhardness through a force balance:

F = ArHmic ∼ πns

³ σ
m

´2

H 0 (11)
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P* = F / (πb2
L H' )
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where Hmic is the microhardness of the softer material in
contact. From Eq. (11) the number of microcontacts can
be determined

ns ∼
F

π (σ/m)2H0 (12)

It can be seen from Eq. (12) that an increase in load creates
new microcontacts while the mean size of microcontacts re-
main constant, i.e., as ∼ σ/m. This is in agreement with
Greenwood and Williamson [3] and also satisfies the pro-
portionality Ar ∼ F reported by Tabor [2].

The thermal model is based on the premise that ns heat
channels, covering the nominal contact area, form a set of
parallel paths for transferring heat flow. If the half-space
assumption is considered, see Fig. 1-b, TCR can be found
from,

Rs, half-space =
1

2ksnsas
∼ 1

2ksns (σ/m)
(13)

Many researchers including Cooper et al. [10] modeled the
micro thermal constriction/spreading resistance using the
flux tube geometry. In this case TCR is,

Rs, flux tube =
ψ (εs)

2ksnsas
∼ ψ (εs)

2ksns (σ/m)
(14)

where ψ (·) is the constriction alleviation factor given in Eq.
(4). The apparent contact area is covered by flux tubes with

the mean radius bs, the relative size of microcontacts can
be found from, εs = as/bs =

p
Ar/Aa, where Aa = πb2L.

Substituting Ar and Aa one obtains

εs ∼
r
F/πb2L
H 0 ≡

√
P ∗ (15)

where P ∗ is a non-dimensional parameter that can be in-
terpreted as the ratio of contact pressure to the pressure at
the microcontacts. Re-arranging Eq. (12), the number of
microcontacts can be expressed in terms of P ∗,

ns ∼
b2L

(σ/m)
2P

∗ (16)

Using the non-dimensional parameter P ∗, the TCR for con-
forming rough surfaces, using the flux tube solution, can be
re-written as

Rs, flux tube ∼
(σ/m)

³
1−√P ∗

´1.5

2ks b2L P
∗ (17)

or in the non-dimensional form

R∗s, flux tube = 2ksLRs ∼

³
1−√P ∗

´1.5

P∗
(18)

where L = b2L/ (σ/m) is the conforming rough limit length
scale. Substituting Eq. (16) in Eq. (13) the TCR for con-
forming rough surfaces, using the heat source on half-space
solution, can be written as

R∗s, half-space ∼
1

P ∗
(19)

Figure 4 shows the comparison between Eqs. (18) and (19).
It can be seen that over a wide range of P ∗ they are al-
most identical and show very good agreement. However, as
expected, at relatively large values of P∗ the half-space re-
lationship, Eq. (19), shows slightly higher resistances than
the flux tube. The RMS relative difference between two
relationships is less than 4 percent. Therefore, the micro-
contacts can be modeled as heat sources on half-space and
Eq. (19) is chosen for thermal analysis of microcontacts.

Using these powerful scale analysis techniques, Eq. (19)
was derived which illustrates that the TCR of microcontacts
is inversely proportional to the dimensionless pressure (or
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external load). To find the equality or exact relationship,
Eq. (19) must be multiplied by the scale analysis constant,
c, which can be found through comparison with experimen-
tal data, i.e.,

R∗s =
c

P∗
(20)

The dimensional forms of thermal resistance and conduc-
tance using hs = 1/ (RsAa), are

Rs =
πc (σ/m)H 0

2ksF

hs =
2

πc
ks

³m
σ

´ P
H 0 (21)

where c and P = F/
¡
πb2L

¢
are the scale analysis constant,

and the nominal pressure, respectively.

Experimental data collected by Antonetti [18], Hegazy
[19], and Milanez et al. [20] are non-dimensionalized and
plotted along with Eq. (20) in Fig. 5. The constant of the
scale analysis c, Eq. (20), was found to be c = 0.36, which
minimizes the RMS difference between the model and the
experimental data. Figure 5 illustrates the comparison be-
tween the scale analysis relationship and the data. The
RMS relative difference between the data and the relation-
ship is about 12% over the entire range of the comparison.
Table 1 indicates the researchers and the specimen materi-
als used in the experiments.

4.2 General Model

Bahrami et al. [21] studied mechanical contact of spher-
ical rough surfaces. Assuming elastic bulk deformation and
plastic deformation for microcontacts, a general contact
pressure distribution was proposed which covers all possible
contacts ranging from the spherical rough to the Hertzian
contact. They proposed a simple correlation for calculating
the radius of the macrocontact as a function of two non-
dimensional parameters,

aL = 1.80 aH

√
α+ 0.31τ0.056

τ0.028
(22)

where α = σρ/a2
H and τ = ρ/aH are the roughness parame-

ter introduced by Johnson [8] and the geometric parameter,
respectively.

Using the flux tube correlation, Eq. (4), and the radius
of the macrocontact area given by Eq. (22), thermal macro

Table 1. RESEARCHERS AND SPECIMEN MATERIALS USED IN COM-

PARISONS

Ref. Researcher Material(s)

A Antonetti [18]

Ni200Ni200-Ag

B Burde [22] SPS 245, CS

CC Clausing-Chao [23]


Brass Anaconda

Mg AZ 31B

SS303

F Fisher [24] Ni 200-Carbon Steel

H Hegazy [19]



Ni200

SS304

Zircaloy4

Zr-2.5%wt Nb

K Kitscha [25] Steel 1020-CS

MM McMillan-Mikic [26] SS303

MR Mikic-Rohsenow [17] SS305

M Milanez et al. [20] SS304

resistance can be calculated from

RL =
(1− aL/bL)

1.5

2ksaL
(23)

The macrocontact area is a circle, thus the heat transferred
in a non-conforming rough contact under vacuum conditions
can be calculated from,

Q = 2π∆Ts

Z aL

0

hs (r) rdr (24)

where hs (r) , ∆Ts = Ti,1 − Ti,2 are the local thermal con-
ductance, and the effective temperature difference for mi-
crocontacts, respectively. The effective micro thermal con-
ductance for a joint can be defined as hs = Q/ (Aa∆Ts).
Therefore, the effective microcontact conductance is

hs =
2π

Aa

Z aL

0

hs (r) rdr (25)

or in terms of thermal resistance, where R = 1/ (hAa) ,

Rs =
1

2π

·Z aL

0

hs (r) rdr

¸−1

(26)
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Figure 5. COMPARISON OF SCALE ANALYSIS RELATIONSHIP WITH DATA AT CONFORMING ROUGH LIMIT

Assuming constant pressure in surface elements dr, the local
thermal conductance at r can be calculated from Eq. (21),

hs (r) =
2

cπ
ks

³m
σ

´ P (r)
H0 (27)

where P (r) is the local contact pressure at r. Substituting
Eq. (27) into Eq. (26), one obtains

Rs =
cH 0 (σ/m)

4ks

·Z aL

0

P (r) rdr

¸−1

(28)

From a force balance, we know that F = 2π
R aL

0
P (r) rdr,

therefore Eq. (28) simplifies to

Rs =
cπH 0 (σ/m)
2ksF

(29)

Equations (21) and (29) are identical also the effective ther-
mal micro resistance Rs is not a function of the surface cur-
vature. Additionally, the pressure distribution profile does

not affect the thermal micro resistance. The micro thermal
resistance Rs is independent of the surface curvature, how-
ever it can be observed through experiments that the joint
resistance Rj increases as surface curvature decreases from
the conforming (ρ→∞) to non-conforming contacts. As
the surface curvature decreases the macrocontact area and
consequently the macro resistance RL are formed, but Rs

remains unchanged as surface curvature varies, Eq. (29).
By superimposing the macro and the micro resistances,

Eq. (7), thermal joint resistance for the general contact case
is obtained

Rj =
0.36πH 0 (σ/m)

2ksF
+
(1− aL/bL)

1.5

2ksaL
(30)

Equation (30) is a general relationship that covers both lim-
iting cases. It can be easily seen that in the conforming
rough limit, where aL → bL the macro resistance RL → 0,
Eq. (21). Also, in the elastoconstriction limit, where σ → 0
the micro resistance Rs → 0 and aL → aH and Eq. (30)
yields Eq. (6).

The assumptions of the present model can be summa-
rized as follows
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Figure 6. COMPARISON OF GENERAL MODEL WITH

NON-CONFORMING ROUGH DATA

• contacting solids are randomly rough, isotropic
• surfaces are clean
• contacting solids are thick relative to surface roughness
• contact is static
• contact occurs in a vacuum
• radiation heat transfer is negligible
• microcontacts are circular and isothermal
• only the first-time contact is considered
• steady-state heat transfer at microcontacts
• microcontacts deform plastically
• spherical surface out-of-flatness
• axisymmetric loading
• the bulk material deformation is elastic.

5 COMPARISON WITH EXPERIMENTAL DATA

Dividing both sides of Eq. (30) by Rs, one obtains

2ksF

πcH 0 (σ/m)
Rj = 1+

F (1− aL/bL)
1.5

πcH 0 (σ/m)aL
(31)

Experimental data collected by Burde [22], Clausing and
Chao [23], Fisher [24], Kitscha [25], and McMillan andMikic
[26] are non-dimensionalized and compared with the model,
Eq. (31), in Fig. 6. Table 1 lists the researchers and the
specimen materials used in the experiments. As illustrated
in Fig. 6, an increase in the external load or the radius of
curvature increases the macrocontact radius aL, thus macro

thermal resistance RL decreases which results in a decrease
in the joint resistance.

Equation (30) can be non-dimensionalized with respect
to the conforming rough limit length scale L and re-written,

R∗j = 2ksLRj =
0.36

P ∗
+
L (1− aL/bL)

1.5

aL
(32)

where L = b2L/ (σ/m) and P
∗ = F/

¡
πb2LH

0¢ .
About 600 experimental data points are non-

dimensionalized and compared with the present model, Eq.
(32), in Fig. 7, see Table 1 for the researchers and the
specimen materials.

In most of the conforming rough data sets, such as
Hegazy [19], experimental data show a lower resistance at
relatively light loads compared with the model and the data
approach the model as the load increases. This trend can be
observed in almost all conforming rough data sets (see Fig.
7). This phenomenon which is called the truncation effect
[20] is important at light loads when surfaces are relatively
rough. A possible reason for this behavior is the Gaussian
assumption of the surface asperities which implies that as-
perities with “infinite” heights exist. Milanez et al. [20]
experimentally studied the truncation effect and proposed
correlations for maximum asperities heights as functions of
surface roughness.

If the external load increases beyond the elastic limit
of the contacting bodies, elasto-plastic and plastic deforma-
tions occur. The plastic macrocontact radius, aP , is larger
than the (elastic) radius aL, i.e., aP > aL. Consequently,
lower TCR will be measured; this trend can be clearly seen
in Fisher [24] data set “F,11A,Ni200-CS”, see Fig. 7.

The accuracy of experimental data were reported by
Antonetti [18], Fisher [24], and Hegazy [19] to be 8.1, 5,
and 7 percent, respectively. Unfortunately, the uncertainty
of other researchers data are not available. The present
model shows good agreement over the entire range of the
comparison with the experimental data, which cover a wide
range of the input parameters, see Table 2. The data also
include the contact between dissimilar metals such as Ni200-
Ag and SS-CS. The surface slope m have not been reported
by Clausing and Chao [23], Kitscha [25], Fisher [24], and Mi-
kic and Rohsenow [17] and were estimated using a correla-
tion proposed by Lambert and Fletcher [6], m = 0.076σ0.52,
where σ is in micrometer. Because of the above-mentioned
approximation to account for unreported data, the accu-
racy of the model is difficult to assess. However, the RMS
and the mean absolute difference between the model and
data for the entire set of data are approximately 14.8% and
10.6%, respectively.
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Figure 7. COMPARISON OF GENERAL MODEL WITH ALL DATA

Table 2. RANGES OF PARAMETERS FOR EXPERIMENTAL DATA

Parameter

7.15 ≤ bL ≤ 14.28 mm
25.64 ≤ E0 ≤ 114.0 GPa
7.72 ≤ F ≤ 16763.9 N
16.6 ≤ ks ≤ 227.2 W/mK
0.04 ≤ m ≤ 0.34
0.12 ≤ σ ≤ 13.94 µm
0.0127 ≤ ρ / 120 m

6 SUMMARY AND CONCLUSION

TCR of non-conforming rough surfaces was studied. It
was shown that the joint resistance is the superposition
of the macro and micro thermal resistances in a vacuum.
Three regions were distinguished for TCR, the conforming
rough limit, the elasto-constriction limit and the transition
region.

It was shown that the heat source on a half-space as-

sumption for the geometry of microcontacts is justifiable. In
other words, microcontacts are located far (enough) from
each other that they do not interfere and can be consid-
ered as heat sources on a half-space. Using scale analysis
methods a new analytical TCR model was developed for
the conforming rough contacts. In this study, instead of
using probability relationships to calculate size and num-
ber of microcontacts, based on physical observations, for
the first time scale relationships were derived. The scale
relationships demonstrated the trends of the experimen-
tal data. The constant of the scale relationship was found
through comparison with the data. This is a great exam-
ple to demonstrate the power of “scale analysis” methods.
In other words, it was shown that TCR can be determined
without knowing the “exact” size and number of microcon-
tacts.

The scale analysis relationship derived for the conform-
ing rough contacts was integrated over the macrocontact
area to extend the scale analysis model to cover the general
contact or the transition region. An expression was derived
for the effective micro thermal resistance of non-conforming
rough contacts. Using the proposed correlation for the ra-
dius of the macrocontact by Bahrami et al. [21] and the
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flux tube correlation the macro thermal resistance was de-
termined. Superimposing the macro and the micro thermal
resistances a general relationship for TCR was derived. This
expression covers the entire TCR of rough contacts ranging
from conforming to spherical smooth bare joints in a vac-
uum.

It was shown that the micro thermal resistance com-
ponent of the joint resistance, Rs, is not a function of the
surface curvature/out-of-flatness. Additionally, the profile
of the effective contact pressure distribution did not affect
the micro thermal resistance Rs.

The present model was compared with 604 TCR data
points, which covered a wide range of surface characteris-
tics, thermal and mechanical properties, and contact be-
tween dissimilar metals. The RMS difference between the
model and data for the entire set of data is approximately
14.8% over the entire range of the comparison.
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